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h ABSTRACT

The angular motion of separation points on a smooth cylinder

immersed in a sinusoidally oscillating flow has been determined
experimentally through the use of a U-shaped water tunnel, a special
differential pressure probe, and a data acquisition system. The results
have been compared with those obtained previously bv Grass and
Kemp for a single amplitude of oscillation through the use of flow visu-
alization. The results have shown that the separation points undergo
large angular excursions during a given cycle, the degree of excursion
depending on the Reynolds number and the Keulegan-Carpenter num-
ber. The separation data obtained in this exploratory investigation will

form the basis of future numerical analysis of oscillating flow about
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I. INTRODUCTION

The separated steady and unsteady flows about bluff bodies have
been almost completely unyielding to both analysis and numerical
simulation for a number of mathematical reasons and fundamental fluid
dynamic phenomena. Separation gives rise to the formation of free
shear layers which roll up into vortex rings or counter-rotating vor-
tices. They, in turn, interact with each other, with the counter-sign
vorticity generated at the base of the body, and with the motion of
often unknown separation points. The wake becomes unsteady even
for a steady ambient flow and the problem of the determination of the
characteristics of the wake becomes coupled to the conditions pre-
vailing upstream of the separation points. Evidently, viscosity modifies
radically the inviscid flow, which, in this case, cannot serve even as a
first approximation to the actual flow. The boundary layer equations
are not annlicable beyond the separation points and are, therefore, of
limited use in bluff-body flow problems. Fage and Johansen's pioneer-
ing experimental work (1928)., Gerrard’s (1966} vortex formation
model, and Roshko’s (1954) numerous contributions. followed by a
large number of important papers, have provided extremely useful
insights into the mechanism of vortex shedding. It became clear that a
two-dimensional body immersed in a two-dimensional steady flow
does not give rise to a two-dimensional steady wake and only a fraction

(about 60 percent for a circular cylinder) of the original circulation




survives the vortex formation. It also became clear that bluff-body flows
exhibiting separation, turbulence, and time dependence are almost
completely unyielding to both analysis and simulation, even if tl.e
ambient flow is assumed to be time invariant. Many flows of practical
interest are unsteady, i.e., the characteristics of the ambient flow are
time dependent.

In the past 20 years or so, a large number of theoretical and
experimental studies have been carried out. These dealt primarily with
unseparated laminar flows, the early stages of impulsively started flow
over plates and cylinders (numerical and experimental studies), and
oscillating flows with zero or non-zero mean flow (on an infinite flat
plate and over a cylinder with streaming flow, all under laminar flow
conditions) for the purpose of studying the effects of flow unsteadiness
on the transition mechanism and turbulence development (see, e.g.,
Bradbury, et al., 1982). Very little has been attempted, either theo-
retically or experimentally, to analyze the wake-boundary-layer inter-
action in time-dependent flows (i.e., with unsteady ambient flow). The
subject of separated time-dependent flow at large Reynolds numbers is
lesser developed but of greater practical importance (particularly to
marine-related topics) relative to other classical component disci-
plines of fluid mechanics.

A number of unsteady flow machines and their use in the investi-
gation of unsteady turbulent boundary layers have been reviewed and
documented by Carr (1981). These included flat plate, diffuser, pipe,
airfoil, and cascade flows. The results have shown that (1) the time-




averaged .r.2an velocity profile is almost always the same as the veloc-
ity profile that would occur in a steady flow having an equivalent mean
external flow velocity; (2) the turbulent structure in the oscillating
flow is not changed from the equivalent steady-state counterpart; and
(3) the unsteady effects are often confined to a thin layer near the
wall, while the outer region of the boundary layer is not strongly
affected. These conclusions, apparently valid for unsteady turbulent
boundary layer flows, are not applicable to unsteady separated, turbu-
lent, bluff-body flows. The separated unsteady flow situations involving
wake return, as in the case of a sinusoidally oscillating flow about a
cylinder, or wake retardation, as in the case of a decelerating
parachute, are an order of magnitude more complex. In steady flow,
the position of the separation points is nearly stationary, except for
small excursions of about three degrees (on a circular cylinder). Fur-
thermore, the interference between the vortices and the body is con-
fined mostly to the vortex formation region. For oscillating flows, the
net effect of the shed vortices is twofold. Firstly, their return to the
body dramatically affects the boundary layer, outer flow, pressure dis-
tribution, and the generation and survival rate of the new vorticity;
Secondly, they not only give rise to additional separation points
(during the early stages of the flow reversal) but also strongly affect the
motion of the primary separation points. These effects are further
compounded by the diffusion and decay of vortices and by the three-
dimensional nature of the flow (all of which give rise to cycle-to-cycle

variations, numerous flow modes, etc.). The stronger and better




correlated the returning vortices, the sharper and more pronounced
the changes are in the pressure distribution on the body and in the
integrated quantities such as lift, drag, and inertia coefficients. Never-
theless, the increased correlation does not eitirely eliminate the con-
sequences of the stochastic variations in the motion of vortices.

In periodic flow, the mobile separation points (when they are not
fixed by sharp edges) undergo large excursions (as much as 120
degrees during a given cycle of oscillating flow over a circular cylin-
der). This experimental fact renders the treatment of boundary layers
on bluff bodies subjected to periodic wake return extremely difficult,
particularly when the state of the boundary layer changes during a
given cycle. Furthermore, the classical criterion of separation for
steady flow, i.e., the vanishing of skin friction on the body, is no longer
valid for unsteady flow. According to the MRS criterion (Moore, 1958;
Rott, 1956; and Sears, 1972), it is the simultaneous vanishing of the
shear and velocity at a point within the boundary layer that determines
the separation point. It is clear from the foregoing that there is little .
hope of devising a satisfactory theoretical model before something is
understood of the unsteady processes associated with the formation
and reversal of the wake, spanwise coherence, and the sensitive
dependence of the motion of vortices on small changes in the previous
conditions and on the nature of transition in oscillating flow about
'smooth and rough cylinders.

For steady ambient flow about bluff bodies, the numerical studies

based on the use of the steady or unsteady form of the Navier-Stokes




equations and some suitable spatial and temporal differencing
schemes are limited, out of necessity, to relatively low Reynolds num-
bers (less than about 1,000} (see, e.g., Lecointe and Piquet, 1984, for a
finite difference solution and Gresho, et al., 1984, for a finite element
solution). The major obstacles to the application of either the finite
difference or the finite element methods to higher Reynolds number
laminar flow are stability, computation time, treatment of the boundary
conditions, and accuracy. Even though many differencing schemes
have been developed to overcome the instability problem (Roache,
1972), maintaining stability continues to be a problem with increasing
Reynolds number. The truncation errors decrease the apparent
Reynolds number by introducing an unknown artificial viscosity. Even
if the problems associated with stability and truncation errors were to
be resolved, the attempt to obtain solutions of the Navier-Stokes equa-
tions at higher Reynolds numbers are limited by a fundamental fluid
dynamic phenomenon: the stability of the flow itself. When the flow
becomes turbulent either in the wake and/or in the boundary layers,
one needs a closure model for turbulence to solve the Reynolds equa-
tions for a time-dependent, three-dimensional, separated, turbulent
flow (even if the ambient flow is smooth and the bluff body is two-
dimensional). Clearly, the roots of the most serious problem in the
solution of the Navier-Stokes equations are buried in the physics of
turbulence. The stability and truncation-error problems associated
with the differencing schemes may be resolved but the problem of

turbulence appears to transcend all efforts.




The numerical solution of unsteady incompressible Navier-Stokes
equations in their vorticity-stream-function formulation has been
investigated by numerous researchers through the use of various finite-
difference techniques. These studies concern mostly the separated
flow about circular cylinder and prisms at relatively low Reynolds
numbers (see, e.g., Davis and Moore, 1982).

It appears that the existing numerical methods cannot yet treat
the high Reynolds number flows with sufficient accuracy for a number
of reasons. The finite difference schemes require a very fine grid, a
turbulence model, and a very large computer memory. It seems that
the modeling of the turbulent stresses in the wake, particularly in
time-dependent flows, will be the major source of difficulty in all
future calculations. Whether it will ever be practical to apply the finite
difference and finite element methods to high Reynolds number flows
is unknown. The inherent difficulties are certainly significant enough
to warrant exploring other solution methods.

The present investigation is an exploratory experimental study of
the motion of separation points on a smooth circular cylinder
immersed in a sinusoidally oscillating flow. The results are expected to
form the basis of all numerical studies in providing guidance for their

formulation as well as comparison for their accuracy and validity.




II. EXPERIMENTAL EQUIPMENT AND PROCEDURES

A U-SHAPED WATER TUNNEL

The U-shaped water tunnel, used in the present investigation, has
been described in detail in numerous theses (see, e.g.. O'Keefe, 1986).
Here only a brief description, together with the modifications made to
it for its adaptation to the present investigation, is presented. The
water tunnel consists of a three feet by five feet by 30 feet horizontal
section and two vertical legs of three feet by six feet by 17 feet (see
Figures 1 and 2).

The top of one of the legs of the tunnel is connected to an air
supply system. A butterfly valve near the top of the tunnel oscillates
with a frequency exactly equal to that of the natural frequency of the
water in the tunnel. The flow amplitude may be maintained at the
desired level and as long as desired by adjusting a gate in front of the
fan supplying the air.

The instantaneous acceleration and hence the displacement of
water is measured by means of a differential pressure transducer, con-
nected to the pressure taps shown in Figure 2 and analyzed subse-

quently together with signals coming from other transducers.

B. TEST CYLINDER
A single, smooth, 5.460-inch aluminum cylinder was used in the

experiments. It spanned the entire test section and there were no

gaps between the cylinder ends and the tunnel walls. At two




diametrically opposed points on a section of the cylinder pressure
taps for the measurement of differential pressure between two points,
separated by a small wire, were drilled. Each pressure tap was 1/64
inch diameter and the center-to-center distance was 0.020 inches.
The wire had a diameter of 0.006 inches and a length of 0.15 inches.
The axis of the wire was normal to the direction of flow. Initially, it
was planned to have two hot film skin-friction probes mounted in the
same cross-section but at the ends of a diameter normal to that joining
the pressure taps. The unfortunate leakage of water into the electrical
wires of the hot film probes eliminated their further use.

Each of the differential pressure taps was connected to a pressure
transducer, carefully drained to remove air and electronically balanced
through the use of a carrier amplifier and recorder system. One of the
pressure transducers had a capacity of 100 inches of water and the
other 300 inches of water. Preliminary experiments with both trans-
ducers have shown that the use of the higher-capacity transducer will
not provide stable enough signals to measure the small differential
pressure across the wire probe. This was particularly made clear from
the evaluation of the preliminary data that the sign ¢hange in the dif-
ferential pressure and the precise time at which it occurred are of
prime importance. Evidently, the success of the technique depended
on the fact that when the separation point coincides with the particu-
lar position of the wire probe, then, and at that instant, the differential
pressure across the wire is zero. At all other times, the flow over the

wire (in either direction) ylelds a differential pressure, signifying that




the separation is not at the position of the wire and that it must either
be fore or aft of the wire. It is clear that the purpose of the very exis-
tence of the wire is to cause a larger differential pressure than that
which would normally occur between the two extremely close pres-
sure taps. It is also clear that the wire had to be as small as it is to
prevent it from behaving like a surface roughness on an otherwise
smooth cylinder. As will be seen later, the wire probe has served the
intended purpose well.

The procedure for the performance of the experiments was as
follows. The tunnel was filled to the desired level, the dissolved air
was allowed to escape (often overnight), the electronic system was
warmed up for about an hour, the transducers were nulled, and the
signals were connected to an analog recorder and to a high-speed data
acquisition system, capable of acquiring digitized data at a rate of
100,000 samples/second. The entire system was monitored and the
data analyzed with a desk-top computer.

Figures 3 and 4 show sample traces of flow acceleration and dif-
ferential pressure measured across the wire probe as a function of
normalized time. These figures show the times at which the differen-
tial pressure has changed it sign, i.e., the times at which the flow
reversed itself at the particular position of the wire probe. The data
were obtained in this manner at suitable angles relative to the hori-
zontal axis by rotating the cylinder axis (from outside the tunnel) at

suitable intervals. The experiments were carried out for four Keulegan-

Carpenter numbers, defined by




—orA _UnT
K—21tD- ) _ (1)

in which A is the amplitude of the flow oscillation at the test section,
D is the diameter of the cylinder, Unp is the maximum velocity in the
cycle, and T is the period of the flow oscillation. The four nominal
values of K were 8, 13.5, 20, and 40. Here, however, only the data
obtained with K = 8, 20, and 40 are reported. The case of K = 13.5
needs the acquisition of additional data for the tracking of the motion
of the separation points which will be reported at a later date.
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III. PRESENTATION AND DISCUSSION OF RESULTS

The data are presented for the three cases separately. In each
case, the motion of the separation point is tracked on the upper and
lower halves of the cylinder as a function of time. Furthermore, the
motion of the separation points is shown schematically on an inset
depicting the cylinder and the critical times in the cyclic history of
the separation points.

Figure 5 shows the variation of the instantaneous velocity u = Un
cos{2n t/T) together with the instantaneous direction of the flow rela-
tive to the positive x-direction. Clearly, the flow is in the negative
x-direction in the interval 0 < t/T < 0.25 and decelerating; the flow is
in the positive x-direction in the interval 0.25 < t/T < 0.75 and accel-
erating in the interval 0.25 < t/T < 0.50 and decelerating in the inter-
val 0.50 < t/T < 0.75; and finally, again the flow is in the negative
x-direction in the interval 0.75 < t/T < 1.0 and accelerating toward its
maximum value. The significance of the directions and rates of change
of the magnitude of velocity will become apparent in connection with

the interpretation of the motion of the separation points.

A THECASEOFK=8
Figures 6a and 6b show the instantaneous position of the separa-

tion points at the upper and lower halves of the cylinder, respectively,
as a function of the normalized time t/T.




e M

As the flow decelerates in the negative x-direction, the separation
point at the top half of the cylinder moves rapidly from about 65 = 90
degrees (measured counter-clockwise from the positive x-axis) to
about 85 = 40 degrees as the ambient flow comes to a momentary rest.
The motion of the separation points during a short interval, preceding
and following the u = O instant, is dictated primarily by the residual
motion of the fluid and of the remaining shed vortices. Considering
the fact that the velocities induced on the cylinder and the differential
pressure across the wire probe are extremely small and the fact that
there may not be one or more clearly definable separation points, the
acquisition of meaningful separation data becomes nearly impossible. A
short time later, however, (t/T = 0.4), and as the flow accelerates in
the x-direction the separation point, which must have been lingering
at 6 = 40 degrees becomes clearly identifiable and moves toward the
top shoulder of the cylinder (65 = 90 degrees) as the flow reaches its
maximum velocity and then decelerates to zero at t/T = 0.75. During
the later parts of the deceleration period, the separation point quickly
moves toward 6g = 140 degrees. Following a brief period during which
there is no clearly identifiable separation point, the flow begins to
accelerate rapidly in the negative x-direction and the separation point
once again begins to move from 0s = 140 degrees toward 65 = 90
degrees. The foregoing description of the separation point is shown in
a schematic way on the inset, where the corresponding letters and
arrows identify the limits and the direction of motion of the separation

points.
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Figure 6b shows the motion of the separation point at the lower
half of the cylinder. As in the case of the top half, the separation angle
oscillates between 05 = -40 degrees and 65 = -140 degrees. Further-
more, a comparison of the motions of the separation points on the
upper and lower halves of the cylinder shows that they are more or
less mirror images of each other (with an extremely small phase shift
of about A(t/T) = 0.015). This shows that at such small Keulegan-
Carpenter numbers the flow behaves as if it started impulsively and
symmetrically at each half cycle. Before closing the discussion of the
case of K = 8, one has to note that the acquisition of additional data,
both at smaller increments of cylinder rotation and with more wire
probes, will be essential in delineating the instantaneous positions of

the separation points more precisely.

B. THE CASE OF K = 20

Figures 7a and 7b show the motion of the separation points at the
top and bottom halves of the cylinder. At the top half, 85 begins at
about 135 degrees when the flow is at its maximum value in the nega-
tive x-direction. Subsequently, it moves toward the shoulder of the
cylinder and stays at approximately 75 degrees, as one would normally
expect the separation to occur in steady flow had the velocity
remained at a constant value of Up,. When the flow reverses its direction
at t/T = 0.75, the 'separat.ion point jumps to about 65 = 145 degrees and
then decreases to about 135 to 140 degrees, returning the flow

conditions on the top half of the cylinder to the starting conditions.
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Similar observations are made regarding the motion of the
separation points at the bottom half of the cylinder, as seen from a
comparison of Figures 7a and 7b, and more clearly in Figure 7c. The
last figure also shows that the separation points are not symmetrically
situated at the corresponding times, as in the case of K = 8. This is
entirely expected and the reason for it is due to the asymmetric shed-
ding of vortices on either side of the cylinder. Additional details of the
respective position of the separation points may be deduced from the

circular plot in the inset.

C. THE CASE OF K = 40

This particular Keulegan-Carpenter number was chosen for two
reasons. One was to track the separation points at sufficiently high K
values and the other was to obtain data at a K value for which there is
some other data for comparison. Grass and Kemp (1979), using a 1.97-
inch cylinder, aluminum particles, and a camera, determined rather
crudely (+10 degrees) the angular position of the separation points on
smooth and roughened cylinders for K = 38. Their data are repro-
duced here from a replot of the original data by Sarpkaya and Isaacson
(1981) (see Figure 8a). According to Grass and Kemp, the separation
point oscillates between about 50 and 150 degrees. These data are
compared later with that obtained in the present investigation.

Figures 8b and 8c show the position of the separation points at
the top and bottom halves of the cylinder, respectively. Shortly after
t/T = 0.75, i.e., after the start of the flow to accelerate in the negative

x-direction, the separation angle starts at a relatively large angle (65 =
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140 degrees). This is expected on the grounds that the flow at each
cycle starts as if it started anew impulsively from rest and that the
separation for such a flow is normally at 8 = 180 degrees. However,
because of the background turbulence remaining from the previous
cycles of oscillation, the separation at the start of the cycle is a little
smaller and, as noted above, at 65 = 110 degrees, as seen in Figure 8b
either at t/T = O or at t/T = 1.0. As the flow begins to decelerate while
moving in the negative x-direction, s moves toward the top of the
cylinder and reaches a minimum value of 85 = 70 degrees, and more or
less remains there throughout the acceleration and deceleration
period of the flow in the positive x-direction. Shortly before the ambi-
ent flow comes to a complete stop, 0s increases very rapidly from 90
to about 140 degrees, completing one cycle of the flow and of the
angular motion of the separation point at the top half of the cylinder.
Figure 8c shows the angular motion of the separation point at the
bottom half of the cylinder. A careful examination of this figure and
comparison of it with Figure 8b show that the separation point at the
bottom half of the cylinder follows nearly exactly the same path, with
the following exception. The events that occur at the first quadrant of
the circle at a given time t; /T occur at the third quadrant at t/T =
t1/T + 0.5. Considering the fact that the data were independently
obtained for the top and bottom halves, the said correspondence is
rather remarkable. The matching of the motion of the sepai'ation point
with a phase difference of 0.5 is equally satisfactory as far as the sec-

ond and fourth quadrants are concerned. -
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Now one is in a position to compare Figure 8b with that obtained
by Grass and Kemp, even though the latter is highly subjecﬁve. The
general trend of the two sets of data for smooth cylinders is about the
same for the motion of flow starting from rest and eventually coming
to rest during a given half cycle, 85 starts at a fairly high value.
decreases to about 70 degrees, and then restarts at the beginning of a
new half cycle. There are, however, major differences between Figures
8a and 8b as far as the actual values and the rates of change of 65 are
concerned. For example, Grass and Kemp data shows that 65 drops to
values as low as 50 degrees. The present data shows a minimum of 70
degrees. Furthermore, near the end of the deceleration and the
beginning of a new half cycle, Grass and Kemp data shows no dramatic
change in the position of 8 whereas, according to the present data,
the separation point moves rather quickly from about 90 degrees to
about 140 degrees. Moreover, there is no indication in Grass and
Kemp data as to what happens at the lower half of the cylinder and
how the motion of the separation points on the two halves of the
cylinder interact with each other. It is now clear that, as the vortices
are shed alternately and asymmetrically on one or the other side of the
cylinder, one should not expect a synchronized motion between the
two separation points as in the case of K = 8. Lastly, not all the differ-
ences between the present data and that of Grass and Kemp can or
should be attributed to the subjective nature of the latter. It is worth
noting that the highest Reynolds number in the Grass and Kemp
experiments is about 54,200 and in the present experiments is about
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130,000. It is a well-known fact that the drag coefficient decreases
rapidly with increasing Reynolds number for a given K (Sarpkaya and
Isaacson, 1981). In fact, for K = 40, the minimum drag coefficient

appears at a Reynolds number of Re = Uy D/v = 150,000. It is also a

well-known fact that, at least in steady flow, the smaller the drag, the
smaller the size of the wake, and vice versa. The two sets of data com-
pared here are in conformity with that fact and tend to partly explain

the values at the two extremes of the separation point excursion.




IV. CONCLUSIONS

The results presented herein warranted the following conclu-
sions. First, it is shown that the separation points can be accurately
determined through the use of a wire probe and differential pressure
across it. This method surely eliminates all the ambiguities associated
with the flow visualization techniques.

Second, it is shown that at a Keulegan-Carpenter number of eight
and, presumably, lower values, the angular motion of the separation
points at the top and bottom halves of the cylinder are nearly symmet-
rical. This shows that the flow behaves as if it started impulsively anew
at each half cycle and that the vortices generated grow and shed
symmetrically.

Third, it is shown that at larger Keulegan-Carpenter numbers,
such as K = 20 and K = 40, the excursion of the separation points on
top and bottom of the cylinder is not symmetrical. However, the
events occurring on the top half of the cylinder at a given time do
occur one-half cycle later at the bottom half.

Last, the separation point data presented herein, as unique and
reliable as they are, are expected to form the basis for comparison of
all numerical models attempting to predict the behavior of sinusoidally
oscillating flow about a cylinder. Such a comparison will serve as a bet-

ter test of the accuracy of the numerical methods than the comparison

of the integrated quantities such as lift and drag forces. It is because of




this reason that the present investigation is being pursued with larger
number and variety of wire probes, with other smooth and rough

cylinders, and at other Keulegan-Carpenter numbers.
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